Dali Tutorial

- 1. Introduction
- 2. Inputs
 - 2.1. Submission
- 3. Outputs
 - 3.1. Structural alignment view
 - 3.1.1.Stacked sequence logos
 - 3.2. 3D superimposition view
 - 3.3. Integrated sequence search tools
 - 3.4. Visualization of protein structure space
- 4. Example
 - 4.1. Selecting the input set
 - 4.2. Position of the amidohydrolase and PHP superfamilies in structure space
 - 4.3. Overlapping sequence motifs of the amidohydrolase and PHP superfamilies
 - 4.4. Looking into the PHP superfamily
 - 4.5. Diversity of molecular functions in the amidohydrolase superfamily
 - 4.6. Conclusion
- 5. Downloads

Appendix A: Sample PDB entry

Appendix B: Input data for plot in Figure 10

1 Introduction

Dali is a protein structure comparison server. The server has been running continuously for over 20 years. The server operated first in Heidelberg (Germany), then Hinxton (UK), now Helsinki (Finland). Dali is based on distance matrix comparison (see References for methods). In favourable cases, structure comparison can reveal distant evolutionary relationships not seen by sequence comparison.

The server (<u>http://ekhidna2.biocenter.helsinki.fi/dali/</u>) supports three types of requests:

- 1. PDB search
- 2. Pairwise comparison
- 3. All against all comparison

The server takes the 3D coordinates of protein structures as input and returns a list of similar structures, structural alignments and superimposed structures. The all against all comparison also returns a structural dendrogram and a projection from protein structure space. The results are linked to sequence search and function prediction servers.

This tutorial explains the web interface of the Dali server using live examples.

2 Inputs

The PDB format is based on records with keywords. A sample PDB structure is given in Appendix A. Only ATOM records are required by Dali. The full specification of the format can be found at http://www.wwpdb.org/docs.html.

The following restrictions apply:

- The structure must contain the coordinates of the backbone atoms: N, CA, C and O. If your structure has only the C-alpha coordinates, you can generate a complete backbone using the MaxSprout server at http://www.ebi.ac.uk/maxsprout.
- The structure must contain at least 30 residues. Shorter chains are ignored by Dali.

Publicly available repositories of protein structures are <u>RCSB</u>, <u>PDBe</u>, and <u>PDBj</u>.

PDB entries have a PDB identifier, which is four characters long and consists of a digit followed by three letters or digits, for example, 3ubp. You can find the PDB entries matching a keyword search at RCSB, http://www.rcsb.org/. Each entry can contain one or more chains. The chain identifier is one character. For example, PDB entry 3ubp has three chains A, B and C. In the submission forms, the chain identifier must be concatenated with the PDB identifier, for example, 3ubpC. The PDB search submission form gives hints on possible continuations when you start typing the PDB identifier.

The Dali server does not accept an amino acid sequence as input. If you know only the amino acid sequence of your protein, you can search for a related PDB structure using sequence comparison with servers like SANSparallel (http://ekhidna2.biocenter.helsinki.fi/sans/, search against PDB database). Comparative modeling servers like SwissModel generate a model which only replaces the side chains (according to a sequence alignment) while the backbone stays very close to the template structure. More adventurous servers may generate a model ab initio when the query sequence has no obvious homolog of known structure. For example, PHYRE, I-TASSER and ROBETTA have been some of the top performers in CASP (Critical Assessment of Structure Prediction).

2.1 Submission

The submission forms (Figure 1) for PDB search, pairwise comparison and all against all comparison accept one, two to 11, and three to 64 input structures, respectively. In pairwise and all against comparison, you must click on the +/- buttons to create the required number of input fields. All against all comparison has two alternative submission forms, one for input sets with uploaded structures and an alternative one for input sets composed only of PDB identifiers.

PDB searches and all against all comparisons are time consuming, upwards of 10-15 minutes. A queueing system is in use, so you have to wait even longer if there are many simultaneous requests. If you left your email address, you will receive an email notification when the results are ready. Otherwise you must stay on the result page or bookmark it so that you can return to it later.

DALI PROTEIN STRUCTURE COMPARISON SERVER	DALI PROTEIN STRUCTURE COMPARISON SERVER	DALI PROTEIN STRUCTURE COMPARISON SERVER
About POB search Pairwise All against all Gallery References Statistics Tutorial PDB search	Adout POB search Pairwise All against all Gallery References Statistics Tutorial Pairwise structure comparison	Attent Total search Tutinitie All against all Callery References Statistica Tutinitie All against all structure comparison STR 1 - Enter your lepot potein structures STR 2 - Enter your lepot potein structures STR 3 - Enter your lepot potein structures
STEP 1 - Enter your query protein structure Structure may be specified by concatenating the PDB identifier (4 characters) and a chain identifier (1 character) or alternatively, you may upload a PDB file.	STEP 1 - Enter your first probein atructure Structures may be specified by concentrating the PDI Identifier (4 characters) and a chain Identifier (1 character) w, alternatively, you may upload a PDI Ble PDI Identifier - chain Identifier ODI Identifier - chain Identifier	Use the -/ -/ bitmet to creater long fields. Structures any two specified by conclusating the POM Monthler (-) constructing) and a submetter (-) association, a submetter/my, submetter (-) association and the first maximum number of longs transformers in 4. If your longst set consists only of structures in the POM, you can use the afternative methods from the structure of the
PDB identifier + chain identifier OR upload file Browse STEP 2 - Optional data You may leave an e-mail address for notification when the job has finished. The job title is used as subject heading	STEP 2 - Enter your second protein structures Use the +/- buttons to create input fields. The maximum number of input structures is 10.	[CO identifier + chain identifier] OR upload file [Remme_m] Label 10 uses in results [1] [STE 2 - Optional facts
In the e-mail. Job the E-mail	FCDB identifier + chain identifier OR upload file Browse - FCDB identifier - chain identifier OR upload file Browse -	You may kave an e-mail address for notification when the job has finished. The job title is used as subject heading in the e-mail protition
STEP 3 - Submit your job Submit Clear	StE# 2 - Submit Clear Submit Clear The results will appear in a new window.	STEP 3 - Solohit yvor jok Submit [Clear] The results will appear in a new window,

Figure 1. Submission forms.

3 Outputs

In this tutorial, we use the amidohydrolase superfamily as example. The amidohydrolase superfamily was first discovered based on structural similarities between urease, adenosine deaminase and phosphotriesterase. Let's see how they are related structurally.

- 1. Go to the submission form for pairwise comparison (Figure 1 middle; from the main page click on the "Pairwise" tab).
- If you do not know the PDB identifiers of the structures you are interested in, make a detour to <u>RCSB's keyword search</u>. For example, from PDB Text we find a phosphotriesterase entry 4xd3 with chains A and G.
- 3. Type 4xd3A in the box for first protein structure.
- 4. Press the plus button twice to create two input fields for second structures.
- 5. Type 3ubpC and 1a4mA in the boxes for second protein structures.
- 6. Press submit.
- 7. Wait for the result.

All request types produce match lists in the same format (Figure 2). The matches are sorted by Dali Z-score. The number column has hyperlinks to the pairwise structural alignment between the query and match structure. Each matched structure is also hyperlinked to the PDB entry. The coordinates of the PDB entry are superimposed on the query structure by rigid-body rotation and translation. The checkboxes are used to select a subset of matches for interactive visualization. The buttons above the match list launch structural alignments in 1D ("Structural Alignment") or 3D ("3D Superimposition (PV)"), and provide links to sequence analysis tools ("SANS" sequence database search, "PANZ" function prediction). The following sections demonstrate the interactive visualization options. Use your result from the above exercise or this live example.

Query: 4xd3A MOLECULE: PHOSPHOTRIESTERASE VARIANT PTE-E1; Select neighbours (check boxes) for viewing as multiple structural alignment or 3D superimposition. The list of neighbours is sorted by Z-score. Similarities with a Z-score lower than 2 are spurious. Each neighbour has links to pairwise structural alignment with the query structure, to pre-computed structural neighbours in the Dali Database, and to the PDB format coordinate file where the neighbour is superimposed onto the query structure. Structural Alignment ☑ Expand gaps 3D Superimposition (PV) SANS PANZ Reset Selection Summary No: Chain Z rmsd lali nres %id PDB Description ☑ 1: 1a4m-A 14.7 4.2 239 349 13 PDB MOLECULE: ADENOSINE DEAMINASE; ☑ 2: 3ubp-C 14.5 3.2 215 570 15 PDB MOLECULE: PROTEIN (UREASE GAMMA SUBUNIT);

Figure 2. Result from pairwise comparison.

3.1 Structural alignment view

The multiple alignment view opens in a new window and displays the alignment of the query structure and the selected matches. The upper block shows the amino acid sequences and the lower block the secondary structure states (H: helix, E: sheet, L: coil). The most frequent symbol in each column is coloured. The alignment view has an option 'expand gaps'. If the option is checked, the complete sequence of all proteins is shown. Residues without a match in the query structure are shown in lowercase. If the option is not checked, all matching sequences are shown stacked on the query sequence, and insertions relative to the query sequence are hidden (Figure 3). We are comparing distantly related proteins but they have a striking signature of invariant amino acids, including the histidines at position 20 and 22 in Figure 3.

DaliLite Results: Multiple structural alignment

Each neighbour is shown in the pairwise Dali-alignment to 4xd3A. Inserted segments relative to the top structure are hidden. You can check the 'Expand gaps' option in the summary page to see the complete sequence of the matched proteins. Uppercase means structurally equivalent positions with 4xd3A. Lowercase means insertions relative to 4xd3A. The first part shows the amino acid sequences of the selected neighbours. The second part shows the secondary structure assignments by DSSP (H/h: helix, E/e: strand, L/l: coil). The most frequent amino acid type is coloured in each column.

Sho	Show Stacked Sequence Logos												
		:	:	:	:	1	:	:					
0001	4xd3A	RINTVRGPITISEA	GFTLTHEHICGSS	SAGFLRAWE	EFFGSRKAL	EKAVRGLRR	ARAAGVRTIVI	DVSTFDL					
0002	1a4mA		PKVELHVHLDG	YMPV	AGCREAI	RIAYEFVEM	KAKEGVVYVE	VRYSPHL					
0003	3ubpC		GGIDTHVHFI			NPDQVDV	ALANGITTLF	GTV TP G-					
		:	:	:	:	1	:	:					
0001	4xd3A	LEEELLEEELHHHH	LLEEEEELLEELI	LLHHHHLE	IHHHLLHHHHH	нннннннн	HHHLLLLEEEH	ELLLHHH					
0002	1a4mA		LEEEEEEHHH		LLLHHHHH	іннннннн	HHHLLEEEEE	EEELLHH					
0003	3ubpC		LEEEEEEELL			LLL HHHH	HHHLLEEEEE	ELLLLH-					

Figure 3. Structural Alignment view (Expand gaps option off).

3.1.1 Stacked sequence logos

The structural alignment view only considers the amino acid sequences of the selected protein structures. The button labelled "Show Stacked Sequence Logos" generates a sequence profile around each structurally known protein by searching for homologs in Uniprot. The sequence profiles are then showed stacked against the query protein (Figure 4, <u>live example</u>). The sequence profiles require optimizing an HMMer model for each structure and this is a slow process, taking about 8 seconds per logo. When you are displaying many logos, zoom out with CTRL-minus so that more rows fit on the screen. Zoom back in with CTRL-plus. The stacked sequence logos show which positions are conserved across the whole set rather than matching by chance in the structural alignment of a small number of structures. The sharp sequence signature motifs often pinpoint the active site of enzyme superfamilies (Figure 5).

Figure 4. Showing a section of Stacked Sequence Logos view (Expand gaps option on).

3.2 3D superimposition view

The 3D superimposition view opens in a new window and displays the selected structures superimposed on the query structure (Figure 5). This is a rigid body transformation, which may look ugly if the RMSD is high. (Dali does not optimize RMSD, it matches contacts). The web page has simple toggles to select display

styles. In particular, sequence and structure conservation can be mapped to the query structure and shown by colour. The colour map for conservation mapping goes from blue for the highest values through green to red for the lowest values. Sequence conservation is calculated as the relative entropy of a column, SUM p(i)log(p(i)/q(i)), where the sum is over twenty amino acid types I and p(i)=n(i)/N where n(i) is the number of occurrences and N is the number of rows in the alignment, and q(i) are the frequencies of amino acid types in the sequence database. The logarithm is taken in base 2 so the unit of relative entropy is bits. Structure conservation is simply the fraction of selected structures that are structurally aligned to the query structure.

We use PV as structure viewer. PV is a Javascript based viewer which works on modern browsers. PV works as advertised with Chrome and Firefox. With Internet Explorer there are some quirks with asynchronous refreshing of the image, which tends to disappear altogether after the user clicks options but can be restored by moving the cursor or clicking the show/hide options repeatedly.

- 1. Check 3ubpC and 1a4mA in your summary page and press the "3D Superimposition (PV)" button. Alternatively, you may use this <u>live example</u>.
- 2. Scale the window to full screen size. This places the viewer area (with light blue passepartout) and option checkboxes side by side.
- 3. You should see a spaghetti of multiple C-alpha traces and side chains. Click on the radio button labelled "Cartoon". Uncheck "All" and check "Query" in the Show/hide structures options and you should see a green cartoon representation of the query protein.
- 4. Click on "Structure conservation" for Query colour. Dark blue regions are structurally aligned in all three structures. Hold down the left mouse button and move the cursor in the viewer area to rotate the structure. Hold down the middle button and move the cursor up/down to zoom in/out.
- 5. Switch to "Sequence conservation" for Query colour and check "Query" in Show/hide side chains options.
- 6. Clear up the messy picture by removing less conserved side chains. Move sliding ruler under "Query side chains > 0 bits" to the left until the value is 4.15 bits. Now conserved residues at the active site are highlighted. Click on the side chains to see their labels with residue numbers.
- 7. Check the Show/hide ligands option. Click atoms to see their labels.

Figure 5. Screenshot of protein viewer (PV).

Results: Amidohydrolase and PHP superfamily

Dendrogram Heatmap Projection Summaries Download

Structural similarity dendrogram. Labels are linked to structural summaries. The dendrogram is derived by average linkage clustering of the structural similarity matrix (Dali Z-scores).

Results: Amidohydrolase and PHP superfamily
Dendrogram Meatmap Projection Summaries Counted

Results: Amidohydrolase and PHP superfamily

Results: Amidohydrolase and PHP superfamily

Results: Amidohydrolase and PHP superfamily

Dendrogram	Heatmap	Projection	Summaries	Download	Dendrogram	Heatmap	Projection	Summaries	Download
 <u>1s4mA</u> <u>1s5kC</u> <u>1bf5A</u> <u>1bksA</u> <u>1gkpA</u> <u>1i8pA</u> <u>1i8pA</u> <u>1i6pA</u> <u>1k6wA</u> <u>1m65A</u> <u>1m65A</u> <u>1m77A</u> 					Data • <u>Similarit</u> • <u>Eigenvec</u> • <u>Newick</u> o • <u>PhyloXM</u>	<u>y matrix</u> : <u>tors</u> from Cor Jendrogram L dendrogram	respondence A	nalysis	

Figure 6. The results of all against all comparison are divided under five tabs.

3.3 Integrated sequence search tools

Sometimes there are uncharacterized proteins in the summary list. From the interactive summary (Figure 2) you can send the amino acid sequences of selected subsets to search Uniprot by SANSparallel (SANS button) or predict function by PANNZER2 (PANZ button). These tools do not use structure information in any way and they are provided for convenience. The mapping of structures to Uniprot brings the great advantage of crosslinks to literature and protein family classification resources (e.g. PFAM).

3.4 Visualization of protein structure space

All against all comparison generates an overview of protein structure space for a set of input structures. The Example section below will take you through the discovery process for structural classification with Dali. At this point, we just show the outputs. The output of all against all comparison has a different layout from PDB search and pairwise comparison. In addition to the summary lists, there are tabs for plots generated from the all against all similarity matrix (Figure 6 and <u>live example</u>).

The dendrogram is clickable. The leaves are linked to the summary list of that structure, which shows the structural alignments of the other structures of the input set aligned against it. The similarity matrix and scatterplot are interactive, responding to hovering the mouse over a data point. A toolbar appears at the upper right corner of the scatterplot. Click on the single arrow to see the label attached to the nearest data point. Structural alignment summaries are linked both to the leaves of the dendrogram and the list under the Summaries tab. The similarity matrix, eigenvector analysis results and pseudo-phylogenetic trees in Newick and PhyloXML format are available under the Download tab. Appendix B shows an example where the eigenvectors from correspondence analysis were downloaded and grouped according to branches in the dendrogram for plotting in Excel.

4 Example

In this example, we revisit the amidohydrolase superfamily 20 years after it was first discovered. We do PDB searches to find a representative set of current members. We shed light on the relationship between amidohydrolases and the PHP superfamily, which has intriguing structural and sequence similarities to amidohydrolases. We do all against all comparison to get an overview of the position of these two superfamilies in protein structure space. The final result can be seen in this <u>live example</u>.

4.1 Selecting the input set

We already know about three structures in the amidohydrolase superfamily from section 3. Using these structures as queries in PDB searches, we can collect more members from the current PDB. To decide whether a protein is a member or not, we look at characteristic features of the superfamily such as: are the nearest structural neighbours all amidohydrolases? is the structural core conserved? is the sequence signature conserved? Dali's search algorithm uses heuristics and is not guaranteed to deliver the optimal alignment. Therefore we performed a number of searches from diverse seeds and combined the results.

Figure 7 shows the result from one PDB search. All the structures listed in Figure 7 are legitimate members of the amidohydrolase superfamily, despite having diverse molecular functions. PDB search results are reported for PDB90 and PDB100. PDB100 contains all structures in the PDB. PDB90 is a non-redundant subset of PDB structures with less than 90 % sequence identity to each other. PDB and PDB90 are updated weekly. PDB90 representatives are not necessarily stable from week to week.

Merging the structural neighbour lists of a few seed structures and removal of redundant structures (with more than 30-40 % sequence identity) resulted in the set shown in Figure 8. The set includes members of the amidohydrolase superfamily and of the PHP superfamily. The PHP superfamily has structural similarities to amidohydrolases and partially overlapping sequence motifs. Tryptophan synthase was added as an outgroup which is not thought to be related to either of the aforementioned superfamilies.

# Quer	y: 4xd3A						
# No:	Chain Z	rmsd	lali	nres	%id	PDB Descri	ption
1:	1qw/-A 59.4	0.5	327	330	96	MOLECULE:	PARATHION HIDROLASE; DUACBURDTETEREPE:
3.	4if2 = A 43 2	1 7	308	324	36	MOLECULE	PHOSPHOTRIESTERASE, HOMOLOGY PROTEIN:
4:	2vc5-A 42.6	1.8	305	314	34	MOLECULE :	ARVIDIALKYLPHOSPHATASE:
5:	4rdz-B 42.1	1.8	305	316	30	MOLECULE :	PARATHION HYDROLASE;
6:	2zc1-A 41.3	2.1	303	333	33	MOLECULE:	PHOSPHOTRIESTERASE ;
7:	5ch9-A 41.1	2.2	307	328	31	MOLECULE:	PHOSPHOTRIESTERASE ;
8:	3k2g-B 39.2	2.2	295	358	29	MOLECULE:	RESINIFERATOXIN-BINDING, PHOSPHOTRIESTERASE-
9:	3rhg-A 38.9	2.2	296	363	27	MOLECULE:	PUTATIVE PHOPHOTRIESTERASE;
10:	3pnz-A 38.2	2.5	294	329	28	MOLECULE:	PHOSPHOTRIESTERASE FAMILY PROTEIN;
11:	3msr-A 37.1	2.1	288	353	25	MOLECULE:	AMIDOHYDROLASES;
12:	1DI6-A 36.7	2.1	2/0	291	30	MOLECULE:	PROSPROTRESTERASE ROMOLOGI PROTEIN;
14:	1160-A 19.8	3 1	213	255	14	MOLECULE:	UNCHARACIERIZED FRUIEIN AF_1705; TATD-BELATED DEOXYRIBONICLEASE:
15:	1zzm-A 19.8	3.4	236	259	18	MOLECULE :	PUTATIVE DEOXYRIBONUCLEASE YJJV:
16:	4p5u-A 19.8	3.0	232	262	15	MOLECULE :	TAT-LINKED QUALITY CONTROL PROTEIN TATD;
17:	3rcm-A 19.7	3.1	236	279	16	MOLECULE:	TATD FAMILY HYDROLASE;
18:	1yix-A 19.6	3.2	234	265	18	MOLECULE:	DEOXYRIBONUCLEASE YCFH;
19:	2gzx-A 19.4	3.2	232	253	16	MOLECULE:	PUTATIVE TATD RELATED DNASE;
20:	3ipw-A 19.3	3.3	243	301	12	MOLECULE:	HYDROLASE TATD FAMILY PROTEIN;
21:	2y1h-B 19.2	3.2	230	265	16	MOLECULE :	PUTATIVE DEOXYRIBONUCLEASE TATDN3;
22:	10nx-A 19.1	3.0	235	390	11	MOLECULE:	ISOASPARTYL DIPEPTIDASE;
23:	2x10-A 19.0 3bo7-A 18 7	3.1	238	293	15	MOLECULE:	PUTATIVE DEOXIRIBONUCLEASE TATUNI;
25:	3mkv-A 18 7	3.0	245	414	15	MOLECULE :	DITATUE ANTOHYDROLASE
26:	2gs8-A 18.6	3.7	252	407	17	MOLECULE :	XAA-PRO DIPEPTIDASE:
27:	3mtw-A 18.1	3.8	244	404	14	MOLECULE :	L-ARGININE CARBOXYPEPTIDASE CC2672;
28:	2ftw-A 18.0	3.1	245	484	13	MOLECULE:	DIHYDROFYRIMIDINE AMIDOHYDROLASE;
29:	2vr2-A 18.0	2.9	240	478	13	MOLECULE:	DIHYDROPYRIMIDINASE;
30:	2vm8-A 18.0	3.2	246	477	10	MOLECULE:	DIHYDROPYRIMIDINASE-RELATED PROTEIN 2;
31:	3e2v-A 17.9	3.8	244	363	10	MOLECULE:	3'-5'-EXONUCLEASE;
32:	4b3z-D 17.9	3.4	250	477	12	MOLECULE:	DIHYDROPYRIMIDINASE-RELATED PROTEIN 1;
33:	4cnu-A 17.9	3.4	250	488	12	MOLECULE :	DIHVDROPYRIMIDINASE-LIKE 3;
34:	4gz/-A 1/.8	3.3	247	492	15	MOLECULE:	DIATDROPIRIATIDINASE; DIATDROPARTATINASE;
36:	419x-B 17 6	39	243	458	17	MOLECULE	
37:	lgkr-A 17.5	3.6	240	451	13	MOLECULE :	NON-ATP DEPENDENT L-SELECTIVE HYDANTOINASE;
38:	3qiq-A 17.5	3.1	243	475	17	MOLECULE :	N-ACYL-D-GLUTAMATE DEACYLASE;
39:	4b90-A 17.5	3.2	242	485	14	MOLECULE:	DIHYDROPYRIMIDINASE-RELATED PROTEIN 5;
40:	4c5y-A 17.5	3.6	237	436	15	MOLECULE:	OCHRATOXINASE ;
41:	1nfg-A 17.4	3.4	245	457	16	MOLECULE:	D-HYDANTOINASE ;
42:	3cjp-A 17.3	2.6	212	262	13	MOLECULE :	PREDICTED AMIDOHYDROLASE, DIHYDROOROTASE FAMILY;
43:	1m/j-A 1/.2	3.2	245	4/4	10	MOLECULE:	D-AMINOACILASE; Depricter Metail-Dependent Hydroise of the tim-ba
45:	2qpx = A 17.2 2n9b = A 17.1	3.8	239	407	16	MOLECULE :	POSTRIE PRIMI DEFENDENT HIDROIRSE OF THE TIM-DR
46:	2paj-A 17.1	3.4	230	421	14	MOLECULE :	DUTATIVE CYTOSINE/GUANINE DEAMINASE;
47:	4i6k-A 17.1	3.4	233	267	11	MOLECULE :	AMIDOHYDROLASE FAMILY PROTEIN;
48:	4tqt-D 17.0	3.4	249	481	13	MOLECULE:	D-HYDANTOINASE ;
49:	3gg7-A 16.8	3.4	220	243	18	MOLECULE:	UNCHARACTERIZED METALLOPROTEIN;
50:	3d6n-A 16.8	3.7	245	422	17	MOLECULE:	DIHYDROOROTASE;
51:	2111-A 16.7	3.4	236	273	13	MOLECULE:	2-PYRONE-4,6-DICARBOXYLIC ACID HYDROLASE, PUTATIV
52:	352J-A 16.5	3.4	241	393	12	MOLECULE:	
54.	2200-A 10.4	3.5	218	385	14	MOLECULE	
55:	200f-A 16.4	3.9	234	403	19	MOLECULE :	4-IMIDAZOLONE-5-PROPANOATE AMIDOHYDROLASE;
56:	2g3f-A 16.4	4.0	236	414	19	MOLECULE :	IMIDAZOLONEPROPIONASE;
57:	3irs-A 16.4	3.5	226	281	11	MOLECULE:	UNCHARACTERIZED PROTEIN BB4693;
58:	2i5g-A 16.2	3.3	236	325	13	MOLECULE:	AMIDOHYDROLASE ;
59:	2gok-A 16.2	4.1	233	404	19	MOLECULE:	IMIDAZOLONEPROPIONASE;
60:	3b40-A 16.1	3.3	242	400	10	MOLECULE :	PROBABLE DIPEPTIDASE;
61:	31u2-A 16.1	3.2	229	309	12	MOLECULE:	LMOZ46Z PROTEIN;
62:	4VIX-E 16.1	3.4 ເ	233	474	15	MOLECULE:	ATKAZINE CHLUKUHIDKULASE;
64 -	3hm7-B 15 7	3.0	219	437	13	MOLECULE	ALLANTOINASE :
65:	3gri-B 15.6	3.4	231	423	11	MOLECULE	DIHYDROOROTASE ;
66:	2z26-A 15.6	3.7	242	344	11	MOLECULE :	DIHYDROOROTASE;
67:	3nqb-A 15.6	3.1	214	587	18	MOLECULE :	ADENINE DEAMINASE 2;
68:	1itq-A 15.6	3.4	235	369	9	MOLECULE:	RENAL DIPEPTIDASE;
69:	41fy-B 15.6	3.7	241	353	11	MOLECULE:	DIHYDROOROTASE;
70:	Зе74-В 15.5	2.9	220	433	13	MOLECULE :	ALLANTOINASE;
71:	з⊥у∪-В 15.4	3.3	237	352	11	MOLECULE:	DIPEPTIDASE AC. METALLO PEPTIDASE. MEROPS FAMILY
72:	∠amx-A 15.4 2wid-A 15.2	3.5	233 206	244	12	MOLECULE:	ADENOSINE DEAMINASE; TVROSINE DEAMINASE;
74.	2 A 15.2	39	220	244 441	16	MOLECULE:	AMIDOHYDROLASE FAMILY PROTEIN OLEI01672 1 465.
75:	2dvt-A 15.0	3.5	221	325	16	MOLECULE	THERMOPHILIC REVERSIBLE GAMMA-RESORCYLATE DECARBO
76:	2ics-A 14.9	3.4	220	368	12	MOLECULE :	ADENINE DEAMINASE;
77:	3ewd-A 14.9	4.1	235	364	11	MOLECULE:	ADENOSINE DEAMINASE;
78:	2gwg-A 14.9	3.2	223	329	10	MOLECULE:	4-OXALOMESACONATE HYDRATASE;
79:	4dyk-A 14.9	3.7	227	437	12	MOLECULE:	AMIDOHYDROLASE;
80:	1j6p-A 14.8	3.9	229	407	12	MOLECULE:	METAL-DEPENDENT HYDROLASE OF
81:	orys-A 14.8	4.1	233	335	13	MOLECULE:	ADENUSINE DEAMINASE 1;
82:	3pnu-A 14.7	3.1	∠35 216	538	17	MOLECULE:	DIREASE CAMMA SUBINIT:
84:	1a5k-C 14.7	3.2	217	566	17	MOLECULE	UREASE (GAMMA SUBUNIT);
85:	4icm-A 14.7	3.6	221	335	14	MOLECULE :	5-CARBOXYVANILLATE DECARBOXYLASE;
r							

Figure 7. Top part of PDB90 summary list for PDB search.

1a4mA	adenosine deaminase
1a5kC	urease gamma subunit
1bf6A	phosphotriesterase
1bksA	tryptophan synthase
1gkpA	hydantoinase
1itqA	renal dipeptidase
1j5sA	uronate isomerase
1 j 6pA	uncharacterized
1k6wA	cvtosine deaminase
1m65A	probable phosphatase YcdX
lonxA	isoaspartyl dipeptidase
1 v 77A	ribonuclease P protein component 3
1vrrB	N-acetylglucosamine-6-phosphate deacetylase
2a31A	AMP deaminase
2anuA	predicted phosphoesterase
2dvtA	gamma-resoculate decarboxulase
2ffiA	2-pyrope-4-6-dicarboxylic acid hydrolase
20w0A	4-oxalomesaconate hydratase
2imrA	S-adenosylhomocysteine deaminase
20b3A	parathion hydriolase
2005A	
209 JA 200 fA	4-imidazolone-5-propapoate amidohydrolase
2001A	isovanthonterin deaminase
20074	uncharacterized
21179A	
20254	arvidialkulnhoenhataeo
21000	enamidase
2v1hB	deoxyribonuclease TatD
2yh1A	uncharacterized
3au2A	DNA polymerase X
3cipA	uncharacterized
3dcnA	histidinol-phosphatase
36388	uncharacterized
36748	allantoinase
3f2bA	DNA polymerase polC
3gg7A	uncharacterized
3gigA	N-acyl-D-glutamate deacylase
3griA	dihydroorotase
3iacA	alucuropate isomerase
3iciA	AepA excenzymes regulatory protein
3irsA	uncharacterized
3k2aB	resiniferatoxin-hinding phosphotriesterase
31s9A	triazine hydrolase
3mkvA	uncharacterized
3mtwA	L-arginine carboxypeptidase
3ngbA	adenine deaminase
300gA	uncharacterized
3pnuA	dihvdroorotase
3av6A	tvrosine-protein phosphatase
4b3zD	dihvdropvriminidase-related
4c5vA	ochratoxinase
4cabA	N-isopropylammelide isopropyl amidohydrolase
4dlfA	uncharacterized
4dziC	uncharacterized
4hk5D	uracil-5-carboxvlate decarboxvlase
4mupB	D-galactarolactone isomerase
4ofcA	2-amino-3-carboxymuconate-6-semialdehyde decarboxylase
4qrnA	5-carboxyvanillate decarboxylase
4rdvB	N-formimino-L-glutamate iminiohvdrolase

Figure 8. Input set used in all against all comparison example.

4.2 Position of amidohydrolases and PHP superfamily in structure space

The set of structures from Figure 8 was submitted to all against all comparison, yielding the results shown in Figure 6. You can use this <u>live example</u> to reproduce the figures. The dendrogram (Figure 9) and correspondence analysis plot (Figure 10) agree quite well in grouping the most strongly similar structures. However, branching order nearer the root becomes more or less arbitrary. For example, adenosine deaminase and AMP deaminase (Group A) are far apart in the dendrogram but adjacent in the correspondence analysis plot. Although members of the PHP superfamily occasionally appear in the structural neighbour lists of amidohydrolases, the two superfamilies appear as structurally distinct in our analyses. In the correspondence analysis plot, the first eigenvector (horizontal) separates PHP domain

proteins from amidohydrolases. PHP domains have a 7-stranded beta barrel, while amidohydrolases have an 8-stranded beta barrel. The second eigenvector (vertical) separates amidohydrolases with the catalytic and small domain from those with only the catalytic domain. The outgroup is near the origin, indicating that it has no special affinity towards any of the other groups.

Results: Amidohydrolase and PHP superfamily

Figure 9: Dendrogram representation of protein structure space. Node labels were added manually.

Figure 10. Correspondence analysis plot. Groups were manually defined and correspond to those in the dendrogram (Figure 9).

4.3 Overlapping sequence motifs of amidohydrolases and PHP superfamily

Both PHP domains and amidohydrolases bind metal ions in their active site. Figure 11 shows a stacked sequence logo comparison of two amidohydrolases and two PHP domains. The representatives were chosen from the extremes of the PHP cloud and amidohydrolase cloud in the correspondence analysis plot. The idea is to bring out invariant aminodhydrolase features (conserved in both amidohydrolases) and invariant PHP domain features (conserved in both PHP domains). We see that although some residues are commonly conserved in both superfamilies, each has unique features missing from the other. It is interesting that these distinct sequence motifs coincide with the structural distinction of PHP domains from amidohydrolases (Figure 10).

Figure 11. Sequence logos for two amidohydrolases (top) and two PHP proteins (bottom).

4.4 Looking into PHP superfamily

The dendrogram (Figure 9) shows a deep divide within the PHP superfamily between phosphatases on the one hand and phosphoesterases on the other. In the correspondence analysis plot, they are separated by the first eigenvector (Figure 10). The structural similarity between the two subclasses dips almost as low as the outlier. Without the unifying sequence motif, we would even question whether they are evolutionarily related. Inspection of 3D superimpositions and multiple structural alignments revealed that while one subsclass has a parallel alpha/beta barrel like amidohydrolases, one of the beta strands has reversed direction in the other subclass (Figure 12). Because Dali reports only sequential alignments, this explains why the alignment score is lower between the subclasses.

Figure 12. Structural conservation of the eight PHP domains in our data set. Blue regions are aligned in all eight PHP domain structures, the green strand of the barrel has reversed direction in some.

4.5 Diversity of molecular functions in amidohydrolase superfamily

The structural dendrogram is labelled with the proteins' functional descriptions. We can observe that, in general, structural groupings coincide with functional categories. This observation fits well with the idea of evolutionary continuity of structure and function. As a corollary, functions in incongruent positions in the dendrogram should alert to possible misclassification. For example, deacetylase 20gjA is incorrectly annotated as dihydroorotase in PDB. Though corrected to deacetylase for this protein in Uniprot, the incorrect annotation has spread to sequence neighbours which remain annotated as dihydroorotases in Uniprot (as you will see in a SANS search). Our input set contains a number of uncharacterized proteins. Functionally characterized neighbours in structure space can direct the formulation of testable hypotheses of their molecular function, at least regarding the class of enzyme function if not precise substrate specificity. For example, ochratoxinase and molinate hydrolase are recently evolved new enzymes.

4.6 Conclusion

The Dali server is a useful aid in structural classification. It generates overviews of selected portions of structure space and sequence space with just a few mouse clicks. Similar narratives as above can be developed for any structurally characterized superfamily.

5 Downloads

The DaliLite software is available for academic use from http://ekhidna.biocenter.helsinki.fi/dali/downloads/download.html.

Appendix A: Sample PDB entry

HEADER	PA	NCREA	ATIC	HO	RMONE	1		16-JA	N-81	1PPT	
TITLE	X-	RAY A	ANAL	YSI	s (1.	4-ANGSTROM	S RESOLUI	ION) OF	AVIAN	PANCREATIC	
TITLE	2 P	OLYPI	EPTI	DE.	SMAI	L GLOBULAR	PROTEIN	HORMONE			
COMPND	MO	L_ID	: 1;								
COMPND	2 M	OLEC	JLE:	AV	IAN F	PANCREATIC 1	POLYPEPTI	DE;			
COMPND	3 C	HAIN	: A;								
COMPND	4 E	NGINI T TD	SEREI	D:	YES						
SOURCE	2 0	всум. п_тр	;⊥; tgm (SCT	ENTTE	TC. METEACI	PIG CATIO				
SOURCE	3 0	RGAN.	ISM_		MON•	TURKEY:	NID GALLO	IAVO,			
SOURCE	4 0	RGAN	ISM 1	TAX	ID: 9	103					
AUTHOR	т.	L.BL	JNDEI	LL,	J.E.F	ITTS,I.J.T	ICKLE,S.E	.WOOD			
JRNL		AUTH	Т	.L.	BLUNE	ELL, J.E.PI	FTS,I.J.1	ICKLE,S.	P.WOOI	,C.W.WU	
JRNL		TITL	X·	-RA	Y ANA	LYSIS (1. 4	4-A RESOI	JUTION) O	F AVIA	AN PANCREATI	C
JRNL		TITL	2 P() LY	PEPTI	DE: SMALL (GLOBULAR	PROTEIN	HORMON	IE.	
JRNL		REF	PI	ROC	.NATI	.ACAD.SCI.	JSA	V. 78	4175	5 1981	
JRNL		REFN	1.	< F 0	2050	ISSI	1 0027-84	24			
JENL		PMID	10	639. 0 1.	3036 073/5	NT 7 9 7 1	175				
ATOM	1	N	GLY	A .	1	2.296	-9.636	18.253	1.00	0.00	N
ATOM	2	CA	GLY	A	1	1.470	-9.017	17.255	1.00	0.00	C
ATOM	3	С	GLY	А	1	0.448	-9.983	16.703	1.00	0.00	C
ATOM	4	0	GLY	А	1	0.208	-11.066	17.345	1.00	0.00	0
ATOM	5	Ν	PRO	А	2	-0.170	-9.672	15.624	1.00	0.00	Ν
ATOM	6	CA	PRO	А	2	-1.135	-10.606	14.958	1.00	0.00	С
ATOM	7	С	PRO	А	2	-0.376	-11.824	14.490	1.00	0.00	С
ATOM	8	0	PRO	A	2	0.776	-11.860	14.075	1.00	0.00	0
ATOM	10	CB	PRO	A	2	-1./1/	-9.829	13.//6	1.00	0.00	C
ATOM ATOM	11	CD	PRO	A	2	-0.817	-0.000	1/ 780	1 00	0.00	C
ATOM	12	N	SER	A	3	-1.184	-12.918	14.566	1.00	0.00	N
ATOM	13	CA	SER	A	3	-0.626	-14.187	14.053	1.00	0.00	C
ATOM	14	С	SER	А	3	-0.642	-14.190	12.493	1.00	0.00	С
ATOM	15	0	SER	А	3	-1.149	-13.332	11.830	1.00	0.00	0
ATOM	16	CB	SER	А	3	-1.360	-15.359	14.573	1.00	0.00	С
ATOM	17	OG	SER	А	3	-2.655	-15.234	14.212	1.00	0.00	0
ATOM	18	Ν	GLN	А	4	0.243	-14.995	11.964	1.00	0.00	Ν
ATOM	19	CA	GLN	A	4	0.489	-14.940	10.481	1.00	0.00	C
ATOM	20	C	GLN	A	4	-0./66	-15.384	9./34	1.00	0.00	C
ATOM ATOM	21	CB	GLN	A A	4	-1.330	-15 895	10.019	1 00	0.00	C
ATOM	2.3	CG	GLN	A	4	2.182	-15.697	8.704	1.00	0.00	C
ATOM	24	CD	GLN	A	4	3.315	-16.670	8.366	1.00	0.00	C
ATOM	25	OE1	GLN	А	4	3.718	-16.761	7.207	1.00	0.00	0
ATOM	26	NE2	GLN	А	4	3.864	-17.403	9.317	1.00	0.00	Ν
ATOM	27	Ν	PRO	А	5	-1.196	-14.647	8.750	1.00	0.00	Ν
ATOM	28	CA	PRO	А	5	-2.414	-14.970	8.087	1.00	0.00	С
ATOM	29	С	PRO	A	5	-2.264	-16.297	7.258	1.00	0.00	C
ATOM ATOM	30 31	CB	PRO	A	5	-1.184	-13 854	0.819 7 153	1 00	0.00	0 C
ATOM	32	CG	PRO	A	5	-1.809	-12.748	7.438	1.00	0.00	C
ATOM	33	CD	PRO	A	5	-0.768	-13.190	8.408	1.00	0.00	C
ATOM	34	Ν	THR	А	6	-3.381	-16.917	7.174	1.00	0.00	N
ATOM	35	CA	THR	А	6	-3.548	-18.158	6.308	1.00	0.00	С
ATOM	36	С	THR	А	6	-3.745	-17.747	4.861	1.00	0.00	С
ATOM	37	0	THR	А	6	-4.693	-17.045	4.518	1.00	0.00	0
ATOM	38	СВ	THR	А	6	-4.752	-18.911	6.884	1.00	0.00	С
ATOM	39	OG1	THR	A	6	-4.040	-19.502	8.074	1.00	0.00	0
ATOM	40	CG2	THR	A	6	-4./99	-20.260	6.058 2.052	1.00	0.00	C
ATOM	41	CD	TIN	A	7	-2.095	-18 017	2 495	1 00	0.00	IN C
ATOM	43	C	TYR	A	7	-4.327	-18.738	2.010	1.00	0.00	C
ATOM	44	0	TYR	A	7	-4.536	-19.927	2.291	1.00	0.00	0
ATOM	45	СВ	TYR	А	7	-1.828	-18.587	1.791	1.00	0.00	C
ATOM	46	CG	TYR	А	7	-1.913	-18.407	0.265	1.00	0.00	С
ATOM	47	CD1	TYR	А	7	-2.029	-17.122	-0.283	1.00	0.00	С
ATOM	48	CD2	TYR	А	7	-1.884	-19.519	-0.588	1.00	0.00	С
ATOM	49	CE1	TYR	А	7	-2.090	-16.948	-1.671	1.00	0.00	C
A'I'OM	50	CE2	'1'YR	А	1	-1.943	-19.344	-T.9./8	1.00	0.00	C

ATOM	51	CZ	TYR A	A 7	-2.039	-18.057	-2.521	1.00	0.00	
ATOM	52	OH	TYR A	A 7	-2.067	-17.876	-3.868	1.00	0.00	
ATOM	53	Ν	PRO A	7 8	-5.261	-18.068	1.439	1.00	0.00	
ATOM	54	CA	PRO A	A 8	-6.566	-18.626	0.996	1.00	0.00	
ATOM	55	С	PRO A	7 8	-6.492	-19.530	-0.193	1.00	0.00	
ATOM	56	0	PRO A	A 8	-7.584	-20.240	-0.510	1.00	0.00	
ATOM	57	СВ	PRO A	A 8	-7.488	-17.397	0.798	1.00	0.00	
ATOM	58	CG	PRO A	A 8	-6.583	-16.313	0.428	1.00	0.00	
ATOM	59	CD	PRO A	7 8	-5.230	-16.608	1.173	1.00	0.00	
ATOM	60	Ν	GLY A	A 9	-5.375	-19.740	-0.857	1.00	0.00	
ATOM	61	CA	GLY A	4 9	-5.423	-20.730	-1.983	1.00	0.00	
ATOM	62	С	GLY A	A 9	-5.256	-19.861	-3.214	1.00	0.00	
ATOM	63	0	GLY A	A 9	-5.790	-18.783	-3.338	1.00	0.00	
ATOM	64	Ν	ASP A	A 10	-4.626	-20.463	-4.248	1.00	0.00	
ATOM	65	CA	ASP A	A 10	-4.521	-19.865	-5.611	1.00	0.00	
ATOM	66	С	ASP A	A 10	-5.891	-19.644	-6.232	1.00	0.00	
ATOM	67	0	ASP A	A 10	-6.079	-18.696	-7.006	1.00	0.00	
ATOM	68	СВ	ASP A	A 10	-3.697	-20.772	-6.523	1.00	0.00	
ATOM	69	CG	ASP A	A 10	-2.225	-20.895	-6.117	1.00	0.00	
ATOM	70	OD1	ASP A	A 10	-1.521	-21.886	-6.544	1.00	0.00	
ATOM	71	OD2	ASP /	A 10	-1.682	-20.014	-5.347	1.00	0.00	
ATOM	72	Ν	ASP A	A 11	-6.810	-20.490	-5.917	1.00	0.00	
ATOM	73	CA	ASP A	A 11	-8.106	-20.411	-6.537	1.00	0.00	
ATOM	74	С	ASP /	A 11	-9.141	-19.681	-5.693	1.00	0.00	
ATOM	75	0	ASP /	A 11	-10.273	-19.451	-6.151	1.00	0.00	
ATOM	76	СВ	ASP A	A 11	-8.681	-21.809	-6.852	1.00	0.00	
ATOM	77	CG	ASP A	A 11	-7.791	-22.570	-7.829	1.00	0.00	
ATOM	78	OD1	ASP A	A 11	-7.396	-21.995	-8.913	1.00	0.00	
ATOM	79	OD2	ASP A	A 11	-7.431	-23.778	-7.563	1.00	0.00	
ATOM	80	Ν	ALA A	A 12	-8.612	-18.887	-4.775	1.00	0.00	
ATOM	81	CA	ALA A	A 12	-9.622	-18.132	-4.017	1.00	0.00	
ATOM	82	С	ALA A	A 12	-10.101	-16.933	-4.820	1.00	0.00	
ATOM	83	0	ALA A	A 12	-9.482	-16.473	-5.779	1.00	0.00	
ATOM	84	СВ	ALA A	A 12	-8.829	-17.575	-2.793	1.00	0.00	
ATOM	85	Ν	PRO A	A 13	-11.366	-16.547	-4.687	1.00	0.00	
ATOM	86	CA	PRO A	A 13	-11.981	-15.406	-5.466	1.00	0.00	
ATOM	8.7	С	PRO A	4 13	-11.187	-14.121	-5.215	1.00	0.00	
ATOM	88	0	PRO A	A 13	-10.522	-13.958	-4.032	1.00	0.00	
ATOM	89	СВ	PRO A	A 13	-13.424	-15.243	-4.908	1.00	0.00	
ATOM	90	CG	PRO A	A 13	-13.500	-16.009	-3.659	1.00	0.00	
ATOM	91	CD	PRO A	A 13	-12.236	-16.882	-3.480	1.00	0.00	
ATOM	92	N	VAL A	A 14	-11.180	-13.190	-6.126	1.00	0.00	
ATOM	93	CA	VAL A	A 14	-10.341	-11.949	-5.914	1.00	0.00	
ATOM	94	C	VAL A	1 14	-10.073	-11.235	-4.610	1.00	0.00	
ATOM	95	O CD	VAL A	1 14	-9.729	-10.720	-3.902	1.00	0.00	
ATOM ATOM	96	CB CC1	VAL A	1 14 1 1 1	-10.4//	-11.110	-7.162	1 00	0.00	
ATOM	00	CGI	VAL P	1 14 1 1 1	-9.009	11 072	-7.002	1 00	0.00	
ATOM	90	CGZ N	CTIL 7	1 14 1 15	-10.013	-11.073	-0.431	1 00	0.00	
ATOM ATOM	99		CTU 7	1 IJ 1 15	-12 142	-10 553	-4.113	1 00	0.00	
ATOM ATOM	101	CA	GLU Z	1 IJ 1 15	-12.142	-10.555	-2.000	1 00	0.00	
ATOM	102	0	GLU Z	1 1 J	_11 170	-10 380	-0 760	1 00	0.00	
ATOM ATOM	102	CB	GLUZ	1 15 1 15	-13 711	-10.553	-2 589	1 00	0.00	
ATOM ATOM	103	CG	GLUZ	1 15 1 15	-14 210	-11 854	-1 955	1 00	0.00	
	105	CD	GLU Z	1 15	-15 561	-11 698	-1 254	1 00	0.00	
ATOM	106	OE1	GLUZ	1 15	-16 152	-12 731	-0 757	1 00	0.00	
ATOM	107	OE2	GLUZ	1 15	-16 108	-10 534	-1 161	1 00	0.00	
	108	N	AGD Z	1 16	-11 319	-12 496	-1 702	1 00	0.00	
	100	CΔ	AGD Z	1 16	-10 488	-13 190	-0 722	1 00	0.00	
ATOM	110	C	ASP Z	1 10 1 16	-9 000	-12 982	-0 958	1 00	0.00	
ATOM	111	0	ASP Z	1 16	-8 238	-12 840	0.013	1 00	0 00	
ATOM	112	CB	ASP 7	- <u>-</u> 0 - 16	-10.706	-14.670	-0.638	1.00	0.00	
ATOM	113	CG	ASP 7	- <u>-</u> 0 - 16	-12.106	-15.022	-0.152	1.00	0.00	
ATOM	114	0D1	ASP Z	4 16	-12.571	-16.208	-0.343	1.00	0.00	
ATOM	115	002	ASP 7	- <u>-</u> 0 - 16	-12.821	-14.131	0.443	1.00	0.00	
ATOM	116	N	LEUZ	- <u>-</u> 17	-8.476	-12.788	-2.105	1.00	0.00	
ATOM	117	CA	LEU Z	4 17	-7.028	-12.438	-2.126	1.00	0.00	
ATOM	118	С	LEUZ	<u>1</u> 7	-6.810	-10.983	-1.717	1.00	0.00	
ATOM	119	õ	LEUZ	/ A 17	-5.812	-10.718	-1.159	1.00	0.00	
ATOM	120	CB	LEUZ	4 17	-6.647	-12.470	-3.630	1.00	0.00	
ATOM	121	CG	LEU A	A 17	-6.525	-13.931	-4.064	1.00	0.00	

ATOM	122	CD1	LEU	А	17	-6.250	-13.916	-5.582	1.00	0.00	
ATOM	123	CD2	LEU	А	17	-5.372	-14.656	-3.263	1.00	0.00	
ATOM	124	Ν	ILE	А	18	-7.786	-10.075	-1.877	1.00	0.00	
ATOM	125	CA	ILE	А	18	-7.676	-8.682	-1.354	1.00	0.00	
ATOM	126	С	ILE	A	18	-7.789	-8.754	0.184	1.00	0.00	
ATOM	127	0	ILE	A	18	-6.937	-8.096	0.818	1.00	0.00	
ATOM	128	СВ	ILE	A	18	-8.822	-7.866	-1.960	1.00	0.00	
ATOM	129	CG1	ILE	А	18	-8.514	-7.564	-3.452	1.00	0.00	
ATOM	130	CG2	ILE	А	18	-8.973	-6.595	-1.116	1.00	0.00	
ATOM	131	CD1	ILE	A	18	-9.640	-6.945	-4.117	1.00	0.00	
ATOM	132	Ν	ARG	A	19	-8.698	-9.540	0.771	1.00	0.00	
ATOM	133	CA	ARG	А	19	-8.636	-9.644	2.284	1.00	0.00	
ATOM	134	С	ARG	A	19	-7.271	-10.180	2.719	1.00	0.00	
ATOM	135	0	ARG	A	19	-6.742	-9.797	3.773	1.00	0.00	
ATOM	136	CB	ARG	A	19	-9./36	-10.584	2.604	1.00	0.00	
ATOM	137	CG	ARG	A	19	-11.010	-9.860	3.115	1.00	0.00	
ATOM	120	CD NE	ARG	A	10	-12.209	-10.742	3.604	1 00	0.00	
ATOM	140	NE CZ	ARG	A	10	-13.244	-10.589	2.620	1 00	0.00	
ATOM ATOM	140	CZ NU1	ARG	A A	10	-14.302	-10.230	2.525	1 00	0.00	
ATOM ATOM	141	NU2	ARG	A	10	-13.049	-9.951	1 331	1 00	0.00	
ATOM ATOM	143	N	PHE	Δ	20	-6 704	-11 222	2 134	1 00	0.00	
ATOM	144	CA	PHE	Δ	20	-5 441	-11 780	2 548	1 00	0.00	
ATOM	145	C	PHE	Δ	20	-4 374	-10 694	2.340	1 00	0.00	
ATOM	146	0	PHE	A	20	-3.489	-10.541	3.246	1.00	0.00	
ATOM	147	CB	PHE	A	20	-5,101	-12.968	1.646	1.00	0.00	
ATOM	148	CG	PHE	A	2.0	-3.710	-13.511	1.946	1.00	0.00	
ATOM	149	CD1	PHE	A	20	-2.666	-13.334	1.030	1.00	0.00	
ATOM	150	CD2	PHE	А	20	-3.489	-14.185	3.148	1.00	0.00	
ATOM	151	CE1	PHE	А	20	-1.392	-13.833	1.327	1.00	0.00	
ATOM	152	CE2	PHE	А	20	-2.218	-14.680	3.443	1.00	0.00	
ATOM	153	CZ	PHE	A	20	-1.168	-14.502	2.535	1.00	0.00	
ATOM	154	Ν	TYR	А	21	-4.347	-9.918	1.280	1.00	0.00	
ATOM	155	CA	TYR	А	21	-3.402	-8.885	1.007	1.00	0.00	
ATOM	156	С	TYR	А	21	-3.411	-7.902	2.181	1.00	0.00	
ATOM	157	0	TYR	А	21	-2.361	-7.533	2.718	1.00	0.00	
ATOM	158	СВ	TYR	А	21	-3.821	-8.142	-0.271	1.00	0.00	
ATOM	159	CG	TYR	А	21	-3.056	-6.870	-0.555	1.00	0.00	
ATOM	160	CD1	TYR	A	21	-1.730	-6.925	-0.993	1.00	0.00	
ATOM	161	CD2	TYR	А	21	-3.708	-5.654	-0.376	1.00	0.00	
ATOM	162	CE1	TYR	A	21	-1.042	-5.733	-1.246	1.00	0.00	
ATOM	163	CEZ	TYR	A	21	-3.022	-4.46/	-0.625	1.00	0.00	
ATOM	164	CZ	TIK	A	21	-1.692	-4.505	-1.058	1.00	0.00	
ATOM	165	N	TIK	A	21	-1.035	-3.335	-1.28/	1 00	0.00	
ATOM ATOM	167		AGE	A	22	-4.042	-6 473	2.000	1 00	0.00	
ATOM ATOM	168	CA	ASE	A	22	-4.720	-7 089	2.000 4.978	1 00	0.00	
ATOM	169	0	AGP	Δ	22	-3 568	-6 404	5 780	1 00	0.00	
ATOM	170	CB	ASP	Δ	22	-6 194	-6.063	3 854	1 00	0.00	
ATOM	171	CG	ASP	A	2.2	-6.707	-5.158	2.746	1.00	0.00	
ATOM	172	OD1	ASP	А	22	-7.967	-5.120	2.494	1.00	0.00	
ATOM	173	OD2	ASP	А	22	-5.890	-4.431	2.071	1.00	0.00	
ATOM	174	Ν	ASN	А	23	-4.505	-8.385	5.271	1.00	0.00	
ATOM	175	CA	ASN	А	23	-4.038	-8.947	6.542	1.00	0.00	
ATOM	176	С	ASN	А	23	-2.506	-9.142	6.402	1.00	0.00	
ATOM	177	0	ASN	А	23	-1.837	-8.942	7.451	1.00	0.00	
ATOM	178	СВ	ASN	А	23	-4.716	-10.254	6.855	1.00	0.00	
ATOM	179	CG	ASN	А	23	-6.186	-10.108	7.257	1.00	0.00	
ATOM	180	OD1	ASN	A	23	-6.841	-11.277	7.242	1.00	0.00	
ATOM	181	ND2	ASN	A	23	-6.691	-9.038	7.581	1.00	0.00	
ATOM	182	Ν	LEU	А	24	-1.987	-9.505	5.267	1.00	0.00	
ATOM	183	CA	LEU	А	24	-0.451	-9.679	5.213	1.00	0.00	
ATOM	184	С	LEU	A	24	0.173	-8.275	5.430	1.00	0.00	
A'I'OM	185	0	LEU	A	24	1.220	-8.264	5.981	1.00	0.00	
A'I'OM	107	CB	LEU	A	24	-0.202	-10.148	3.805	1.00	0.00	
ATOM ATOM	100	CG CD1	LEU	A 7	∠4 24	1.2/7	-11.470	3.548	1 00	0.00	
ATOM	100 100	CDJ	⊥≞∪ т ⊡тт	A 7	∠4 24	1 400	-11 010	4.339	1 00	0.00	
ATOM ATOM	⊥09 190	UDZ N	U D D L D	A D	24 25		-11.UIZ	∠.0/0 1 011	1 00	0.00	
ATOM	191	CA	GT N	A	25	0.410	-5.877	5.096	1.00	0.00	
ATOM	192	С	GLN	A	25	0.191	-5.541	6.582	1.00	0.00	

ATOM	193	0	GLN	А	25	1.265	-5.150	7.065	1.00	0.00
ATOM	194	СВ	GLN	А	25	-0.806	-4.832	4.429	1.00	0.00
ATOM	195	CG	GLN	А	25	-0.281	-3.402	4.489	1.00	0.00
ATOM	196	CD	GLN	А	25	-0.921	-2.504	3.422	1.00	0.00
АТОМ	197	OE1	GLN	А	25	-0.397	-1,428	3.134	1.00	0.00
ATOM	198	NE2	GLN	А	25	-2.028	-2.888	2.811	1.00	0.00
ATOM	199	N	GLN	A	2.6	-0.856	-5.749	7.310	1.00	0.00
АТОМ	200	CA	GLN	A	26	-0.856	-5.563	8.757	1.00	0.00
ATOM	201	C	GLN	Δ	26	0 308	-6 289	9 398	1 00	0 00
ATOM	202	0	GLN	Δ	26	1 009	-5 921	10 266	1 00	0 00
	202	CB	GLN	Δ	26	-2 266	-5 866	9 301	1 00	0.00
	203	CG	GLN	Δ	26	-2 357	-5 747	10 824	1 00	0.00
ATOM	205	CD	GLN	Δ	26	-2 333	-4 297	11 313	1 00	0.00
ATOM	205	OE1	GLN	Δ	26	-2 414	-4 053	12 516	1 00	0.00
ATOM	200	NE2	GLN	A	26	-2.225	-3.309	10.444	1.00	0.00
ATOM	208	N	TYR	Δ	27	0 366	-7 626	9 157	1 00	0.00
ATOM	200	CA	TYR	Δ	27	1 356	-8 520	9 698	1 00	0.00
	210	C	TYR	Δ	27	2 759	-8 036	9.050	1 00	0.00
ATOM	211	0	TYR	Δ	27	3 622	-7 942	10 245	1 00	0.00
ATOM	212	CB	TYR	Δ	27	1 111	-9 949	9 116	1 00	0.00
ATOM	213	CG	TYR	A	27	2.122	-10.986	9.594	1.00	0.00
ATOM	214	CD1	TYR	Δ	27	3 124	-11 439	8 729	1 00	0 00
ATOM	215	CD2	TYR	Δ	27	2 044	-11 485	10 899	1 00	0 00
ATOM	216	CE1	TYR	A	27	4.061	-12.377	9,173	1.00	0.00
ATOM	217	CE2	TYR	A	27	2.984	-12.421	11.346	1.00	0.00
ATOM	218	CZ	TYR	Δ	27	3 998	-12 862	10 486	1 00	0.00
ATOM	219	OH	TTR	Δ	27	4 932	-13 751	10.922	1 00	0.00
ATOM	220	N	LEII	Δ	28	3 051	-7 735	8 171	1 00	0.00
ATOM	220	CD	LEU	Δ	28	4 342	-7 279	7 784	1 00	0.00
ATOM	222	C	LEU	Δ	28	4 675	-5 907	8 478	1 00	0.00
ATOM	222	0	LEU	Δ	28	5 887	-5 811	8 927	1 00	0.00
ATOM	223	CB	LEU	Δ	28	4 614	-7 138	6 312	1 00	0.00
ATOM	225	CG	LEU	Δ	28	4 490	-8 512	5 562	1 00	0.00
ATOM	226	CD1	LEU	Δ	28	4 429	-8 253	3 969	1 00	0.00
ATOM	220	CD1	LEU	Δ	28	5 761	-9 362	5 838	1 00	0.00
ATOM	227	N N	VGM	71	20	3 7 3 7	_/ 993	8 530	1 00	0.00
ATOM	229	CD	ASN	Δ	29	4 064	-3 735	9 328	1 00	0.00
ATOM	230	C	ASN	Δ	29	4 502	-4 080	10 751	1 00	0.00
ATOM	231	0	ASN	Δ	29	5 252	-3 321	11 381	1 00	0.00
ATOM	232	CB	ASN	Δ	29	2 748	-2 894	9 387	1 00	0.00
ATOM	233	CG	ASN	Δ	29	2 581	-2 132	8 083	1 00	0.00
ATOM	234	001	ASN	Δ	29	1 565	-1 465	7 896	1 00	0.00
ATOM	235	ND2	ASN	Δ	29	3 539	-2 200	7 175	1 00	0.00
ATOM	236	N	VAT.	A	30	3.812	-5.044	11,456	1.00	0.00
ATOM	237	CA	VAL	A	30	4.069	-5.352	12.824	1.00	0.00
ATOM	238	C	VAT.	Δ	30	5 379	-6 029	12 954	1 00	0.00
ATOM	239	0	VAL	A	30	6.270	-5.680	13.834	1.00	0.00
ATOM	240	CB	VAT.	A	30	2.961	-6.250	13.460	1.00	0.00
ATOM	241	CG1	VAL	A	30	3.526	-6.593	14.954	1.00	0.00
ATOM	2.4.2	CG2	VAL	A	30	1.683	-5.435	13.674	1.00	0.00
ATOM	243	N	VAL	A	31	5.698	-6.965	12.038	1.00	0.00
ATOM	2.4.4	CA	VAL	A	31	7.001	-7.699	12.162	1.00	0.00
ATOM	245	С	VAL	A	31	8.157	-6.782	11.957	1.00	0.00
ATOM	246	0	VAL	A	31	9.302	-7.004	12.397	1.00	0.00
ATOM	2.47	СВ	VAL	A	31	6.845	-8.810	10.979	1.00	0.00
ATOM	248	CG1	VAL	А	31	8.217	-9.440	10.757	1.00	0.00
ATOM	249	CG2	VAL	A	31	5.842	-9.913	11.342	1.00	0.00
ATOM	2.50	N	THR	A	32	8.037	-5.850	11.015	1.00	0.00
ATOM	251	CA	THR	A	32	9.068	-4.861	10.736	1.00	0.00
ATOM	252	С	THR	A	32	8.975	-3.622	11.693	1.00	0.00
ATOM	253	0	THR	A	32	9.882	-2.752	11.522	1.00	0.00
ATOM	254	СВ	THR	Ā	32	8.833	-4.336	9.342	1.00	0.00
ATOM	255	OG1	THR	Ā	32	7.762	-3.572	9.058	1.00	0.00
ATOM	256	CG2	THR	A	32	9.614	-4.848	8.439	1.00	0.00
ATOM	257	N	ARG	A	33	8.154	-3.603	12.666	1.00	0.00
ATOM	258	CA	ARG	A	33	7.995	-2.499	13.658	1.00	0.00
ATOM	259	C	ARG	A	33	7.787	-1.166	12.943	1.00	0.00
ATOM	260	0	ARG	A	33	8.043	-0.093	13.507	1.00	0.00
ATOM	261	СВ	ARG	Ā	33	9.235	-2.379	14.561	1.00	0.00
ATOM	262	CG	ARG	A	33	9.711	-3.734	15.065	1.00	0.00
ATOM	263	CD	ARG	A	33	10.875	-3.613	16.039	1.00	0.00

ATOM	264	NE	ARG	А	33	10.549	-2.811	17.223	1.00	0.00	N
ATOM	265	CZ	ARG	Α	33	9.938	-3.306	18.303	1.00	0.00	С
ATOM	266	NH1	ARG	Α	33	9.575	-4.596	18.352	1.00	0.00	N
ATOM	267	NH2	ARG	А	33	9.649	-2.584	19.395	1.00	0.00	N
ATOM	268	Ν	HIS	А	34	7.031	-1.228	11.897	1.00	0.00	Ν
ATOM	269	CA	HIS	А	34	6.779	0.039	11.099	1.00	0.00	С
ATOM	270	С	HIS	А	34	5.289	0.163	10.798	1.00	0.00	С
ATOM	271	0	HIS	А	34	4.835	-0.137	9.689	1.00	0.00	0
ATOM	272	CB	HIS	А	34	7.587	-0.011	9.878	1.00	0.00	С
ATOM	273	CG	HIS	А	34	7.608	1.293	9.098	1.00	0.00	С
ATOM	274	ND1	HIS	А	34	6.953	1.430	7.879	1.00	0.00	N
ATOM	275	CD2	HIS	А	34	8.195	2.486	9.363	1.00	0.00	С
ATOM	276	CE1	HIS	А	34	7.144	2.668	7.454	1.00	0.00	С
ATOM	277	NE2	HIS	А	34	7.884	3.310	8.330	1.00	0.00	Ν
ATOM	278	Ν	ARG	А	35	4.524	0.544	11.879	1.00	0.00	N
ATOM	279	CA	ARG	А	35	3.108	0.616	11.852	1.00	0.00	С
ATOM	280	С	ARG	А	35	2.637	1.882	11.134	1.00	0.00	С
ATOM	281	0	ARG	А	35	1.446	2.229	11.173	1.00	0.00	0
ATOM	282	CB	ARG	А	35	2.550	0.636	13.314	1.00	0.00	C
ATOM	283	CG	ARG	А	35	2.848	-0.712	13.994	1.00	0.00	С
ATOM	284	CD	ARG	А	35	2.475	-0.788	15.476	1.00	0.00	С
ATOM	285	NE	ARG	А	35	3.312	-1.745	16.223	1.00	0.00	N
ATOM	286	CZ	ARG	А	35	2.837	-2.773	16.945	1.00	0.00	С
ATOM	287	NH1	ARG	А	35	1.521	-3.007	17.037	1.00	0.00	N
ATOM	288	NH2	ARG	А	35	3.612	-3.634	17.621	1.00	0.00	N
ATOM	289	Ν	TYR	А	36	3.365	2.609	10.443	1.00	0.00	N
ATOM	290	CA	TYR	А	36	2.765	3.446	9.296	1.00	0.00	С
ATOM	291	С	TYR	А	36	2.332	2.479	8.197	1.00	0.00	С
ATOM	292	0	TYR	А	36	3.166	1.720	7.671	1.00	0.00	0
ATOM	293	СВ	TYR	А	36	4.021	4.330	8.787	1.00	0.00	С
ATOM	294	CG	TYR	А	36	4.734	4.795	10.058	1.00	0.00	С
ATOM	295	CD1	TYR	А	36	5.675	3.963	10.681	1.00	0.00	С
ATOM	296	CD2	TYR	А	36	4.424	6.040	10.616	1.00	0.00	С
ATOM	297	CE1	TYR	А	36	6.332	4.393	11.840	1.00	0.00	С
ATOM	298	CE2	TYR	А	36	5.083	6.471	11.773	1.00	0.00	С
ATOM	299	CZ	TYR	А	36	6.043	5.652	12.379	1.00	0.00	С
ATOM	300	OH	TYR	А	36	6.704	6.088	13.485	1.00	0.00	0
ATOM	301	OXT	TYR	А	36	1.276	2.139	7.885	1.00	0.00	0
HETATM	303	ZN	ZN	А	37	1.119	-11.175	19.270	1.00	0.00	ZN

Appendix B: Input data for plot in Figure 10

PDBID	EV1	Α	В	С	D	E	F		G	н	Outlier
1a4mA	0.04	-0.02									
2a3IA	0.03	0.00									
1j5sA	-0.06			0.21							
2qpxA	-0.03			0.15							
3iacA	-0.07			0.21							
1bf6A	-0.02				0.08						
2ob3A	-0.01				0.09						
2vc5A	-0.02				0.09						
2y1hB	-0.01				0.06						
3gg7A	-0.03				0.05						
3k2gB	-0.02				0.09						
1itqA	-0.04					0.13					
2dvtA	-0.07					0.22					
2ffiA	-0.04					0.12					
2gwgA	-0.05					0.21					
ЗсјрА	-0.04					0.12					
3irsA	-0.03					0.14					
4dlfA	-0.05					0.14					
4dziC	-0.05					0.21					
4hk5D	-0.08					0.22					
4mupB	-0.05					0.11					
4ofcA	-0.07					0.23					
4qrnA	-0.07					0.25					
1a5kC	0.09						0.01				
1gkpA	0.08						0.00				
1onxA	0.09						-0.04				
1yrrB	0.08						-0.05				
2vunA	0.09						-0.05				
3e74A	0.10						-0.02				
3giqA	0.10						-0.02				
3griA	0.09						-0.01				
3nqbA	0.09						-0.06				
3pnuA	0.01						0.08				
4b3zD	0.08						0.02				
1j6pA	0.14							-0.13			

1k6wA	0.10	-0.09		
2imrA	0.07	-0.07		
2ogjA	0.10	-0.04		
2oofA	0.11	-0.11		
2pajA	0.13	-0.11		
2uz9A	0.14	-0.13		
3icjA	0.11	-0.08		
3ls9A	0.13	-0.12		
3mkvA	0.12	-0.10		
3mtwA	0.12	-0.10		
3ooqA	0.13	-0.09		
4c5yA	0.12	-0.10		
4cqbA	0.11	-0.09		
4rdvB	0.14	-0.13		
4ub9A	0.11	-0.08		
4v1xE	0.14	-0.12		
1m65A	-0.18		-0.09	
1v77A	-0.04		-0.06	
3au2A	-0.20		-0.07	
3dcpA	-0.15		-0.08	
3qy6A	-0.08		0.02	
2anuA	-0.35			-0.23
2yb1A	-0.38			-0.26
3e38A	-0.46			-0.32
3f2bA	-0.20			-0.13
1bksA	-0.06			

-0.01